0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
If p(1) = 1, p(2) = 11, p(3) = 111, p(4) = 1111, etc.
where p(n) a 10-base integer represented by a string of n ones.
Most of the repunit numbers are composite.
How do you prove that for p(n) to be prime n has to be a prime number?
No comments:
Post a Comment