Friday, November 19, 2010
Interesting Property of the cubes
1^3 = 1
2^3 = 8
3^3 = 27
4^3 = 64
5^3 = 125
6^3 = 216
7^3 = 343
8^3 = 512
9^3 = 729
10^3 = 1000
11^3 = 1331
12^3 = 1728
.......
.......
Now,
1^3 + 2^3 = 9 = 3^2
1^3 + 2^3 + 3^3 = 36 = 6^2
1^3 + 2^3 + 3^3 + 4^3 = 10^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 225 = 15^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 = 441 = 21^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 = 784 = 28^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 = 1296 = 36^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 = 2025 = 45^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3 = 3025 = 55^2
1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3 + 11^3 = 4356 = 66^2
etc.
Could you prove that the sum of consecutive perfect cubes is always a square number?
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment