## Monday, December 27, 2010

### Find x; x + 1 = a^2 and x/2 + 1 = b^2

x + 1 = a^2 and x/2 + 1 = b^2 <=> a^2 - 2b^2 = -1

Compare the different results:

A008844: Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.

1, 25, 841, 28561, 970225, 32959081, 1119638521, 38034750625, 1292061882721, 43892069261881, 1491038293021225, 50651409893459761, 1720656898084610641, 58451683124983302025, 1985636569351347658201

Also,

a^2 * b^2 = (x + 1)(x/2 + 1)

A008845: n+1 and n/2+1 are squares.

0, 48, 1680, 57120, 1940448, 65918160, 2239277040, 76069501248, 2584123765440, 87784138523760, 2982076586042448, 101302819786919520, 3441313796169221280, 116903366249966604048, 3971273138702695316400

A002315: NSW numbers: a(n) = 6*a(n-1) - a(n-2); also a(n)^2 - 2*b(n)^2 = -1 with b(n)=A001653(n)

1, 7, 41, 239, 1393, 8119, 47321, 275807, 1607521, 9369319, 54608393, 318281039, 1855077841, 10812186007, 63018038201, 367296043199, 2140758220993, 12477253282759, 72722761475561, 423859315570607, 2470433131948081

A001653: Numbers n such that 2*n^2 - 1 is a square.

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, 1513744654945, 8822750406821, 51422757785981, 299713796309065, 1746860020068409,